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The production and diffusion of vorticity in duct flow 
By E. BRUNDRETT AND W. D.  BAINES 

Department of Mechanical Engineering University of Toronto, Toronto 

(Received 14 June 1963 and in revised form 2 December 1963) 

Secondary flows in non-circular ducts are accompanied by a longitudinal com- 
ponent of vorticity. The equation of motion defining this component in a tur- 
bulent flow is composed of three terms giving the rates of production, diffusion 
and convection. Since the expression for production is the second derivative of 
Reynolds stress components, longitudinal vorticity cannot exist in laminar 
flow. For turbulent flow in a square duct the Reynolds stress tensor is examined 
in detail. Symmetry requirements alone provide relationships showing that the 
production is zero along all lines of symmetry. General characteristics of flow 
in circular pipes are sufficient to indicate where the production must be greatest. 
Experimental measurements verify this result and define the point density of 
production, diffusion and convection of vorticity. Data also indicate that the 
basic pattern of secondary flow is independent of Reynolds number, but that with 
increasing values of Reynolds number the flows penetrate the corners and 
approach the walls. A similar experimental investigation of a rectangular duct 
shows that the corner bisectors separate independent secondary flow circulation 
zones. Production of vorticity is again associated with the region near the bisector. 
However, there is some evidence that the secondary flow pattern is not so complex 
as inferred from the distortion of the main longitudinal flow. 

1. Introduction 
There is ample evidence that turbulent flow in a long duct of non-circular 

cross-section is accompanied by lateral spiral motions. This secondary flow 
convects main flow momentum and energy towards the wall in some regions and 
away from the wall in other regions. Thus, mean flow streamlines must be helical 
and not the straight lines found in circular pipes. Nikuradse (1926) was probably 
the first to delineate the discrepancies between flow in circular pipes and square 
ducts. Lines of constant velocity or isovels are displaced towards the corners 
and away from the mid-point of the walls compared to the isovels for laminar 
flow (figure 1). Prandtl(l927) suggested that these were the result of secondary 
flows toward the corners which to satisfy continuity required a return flow at 
the mid-point of the walls. It was also postulated that these were the result of the 
turbulent fluctuations along the isovels giving a net flow normal to the isovel 
wherever a variation in curvature occurred. The magnitude of the secondary 
velocities could not be measured a t  that time because of the error introduced 
by the presence of the yaw-meter when used in regions possessing mean velocity 
gradients. 
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FIGERE 1. Isovels of' axial vc-locity for flow in a square duct (Leutheusser 1963). 

L = 1.5 in., Uc.L = 65.9 ft./sec, U,, = 54.8ft./sec, Ua,D,/v = 83,000. 

temporary engineering practice for the prediction of heat transfer and shear 
distribution in complex-shaped passages is in error because of the assumption 
of an inner-law velocity distribution over the entire cross-section, Even more 
serious is the neglect of the secondary flows which tend to produce uniform 
shear and heat transfer around the periphery of the duct. However, in a currently 
used approximation in hydraulics the transport coefficients are considered uni- 
form which would be the result of the secondary currents being very large. 

In  this paper the origin and dissipation of the secondary flows in a square 
duct are discussed, and experimental evidence is introduced showiag the 
mechanism by which these arise and are controlled. The commonly used momen- 
tum and energy equations are not significant in this description because the 
secondary velocities play only the role of convecting mechanisms. The analysis 
is based entirely on the equation for mean-flow longitudinal vorticity. The fluid 
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elements must possess an angular velocity about an axis in the main flow direc- 
tion if the secondary velocities exist. The essential information as to where the 
secondary flows originate and are dissipated is obtained from a detailed evalua- 
tion of all terms in the equation for angular velocity. The properties of the 
Reynolds stress tensor are considered in detail because of the controlling role 
which it plays in the equation. 

2. Vorticity equation 
The mean-flow vorticity equation can be obtained by operating on the Navier- 

Stokes equation for mean quantities with the curl operator giving for the mean 
vorticity vector Qk the relationship 

where eijk is the usual alternating third-order tensor. This can also be interpreted 
as the equation expressing the angular momentum change for a small fluid 
element. The left-hand side is the product of the mass of the element and the 
angular acceleration following the flow and the right-hand side the sum of the 
moments of the forces acting on the element. Indeed, equation (1) can be 
derived directly by considering a small volume of fluid. The moments of the sur- 
face forces are equated to the rate of change of angular momentum of the 
contained fluid. 

Each of the four terms in equation ( 1 )  is easily identified as a kinematic process. 
The first on the left-hand side represents the increase in vorticity of a fluid ele- 
ment by convection along a streamline. The second term represents theincrease of 
vorticity due to stretching of the vortex lines. As such it embodies the effect of 
increasing angular velocity of a stream tube as it passes through a constriction. 
Thus the area of the stream tube must change in the flow direction for this term 
to be non-zero. It is evident that in uniform flow in a duct it must be zero and 
thus is not a factor in the flow considered herein. The terms on the right-hand 
side, which express the effects of the turbulent and viscous stresses respectively, 
tend to increase the angular momentum of a particle if directed in the same sense 
as the vorticity vector. Townsend (1956) defined this process as the production 
of vorticity. If directed in the opposite sense the effect is the destruction of 
vorticity . 

The kinematic effect of the turbulent field on the mean flow is demonstrated 
by expanding the first term on the right and introducing the turbulent vorticity 
wk = eijk (au,/ax,), giving a form analogous to the term on the left 

Thus these are respectively the increase of mean-flow angular momentum due 
to the average convection of turbulent vorticity and to the average stretching of 
turbulent vortex lines. However, without a clear physical picture of the turbu- 
lent field the sign and magnitude of the terms are not evident. On the other hand, 
the effect of the viscous term is well understood. This represents the diffusion 



378 E. Brundrett and W.  D. Baines 

of vorticity down its gradient, tending to make vorticity evenly distributed in 
space. 

For flow in non-circular ducts the x,-axis is defined in the direction of the duct 
centreline and x2 and x, are orthogonal co-ordinates in the lateral cross-section 
(figure 2 ) .  The main flow is described by U, and the secondary flows by U2 and 
U,. For uniform flow the x1 gradients of all velocity mean properties must be 
zero and thus the first component of equation (1) reduces to 

FIGURE 2.  Co-ordinates for flow in a squate duct. 

Because equation (3) includes only velocities and gradients in the x2 and x3 
directions, Q, = aU,/ax2 - aU21ax3 exists only if the lateral velocities exist and vice 
versa. The main longitudinal flow does not enter this process except as it deter- 
mines the lateral turbulence components and correlations. This is even more 
apparent if the physical action of each term is examined. Terms on the left 
represent the convection of secondary vorticity by the secondary flow itself. 
The tendency of this process is to make the vorticity constant along the secondary 
flow streamlines. A similar effect is produced by the last terms on the right. 
These represent the diffusion of vorticity by viscosity and tend to make the 
vorticity uniform over the duct cross-section by diffusing it from regions of high 
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intensity to regions of low intensity. In a straight duct this acts to slow down the 
particle rotation. In  laminar flow in ducts these are the only terms in the equation 
since Reynolds stresses do not exist. Hence, secondary flows cannot occur in a 
uniform flow because flow mechanisms serve only to transport and destroy 
vorticity. A different situation must occur in turbulent flows with the possible 
addition of the production terms. Thus, a steady-state condition can be obtained 
with the production term accelerating the fluid particle about the x,-axis and the 
diffusion terms tending to decelerate the particle. Convection by the secondary 
flow serves to transport vorticity from regions of production to regions of dif- 
fusion. Thus, the most important term in equation (3) is the production of 
vorticity but the magnitude of this cannot be determined from general equations. 
The size and distribution of the Reynolds stresses must be considered. 

3. Reynolds stress tensor for flow in a square duct 
For a square cross-section the flow properties are symmetrical with respect to 

axes through the mid-points of the sides, x, and x,, and to axes along the diagonals, 
x,,, and x3,. Thus the Reynolds stress tensor can be shown to have simplified 
forms along these axes. Geometrical relations are written for the velocity com- 
ponents related to the two systems of axes and the symmetry conditions imposed. 
As a result relationships are derived for the components of the tensor. At the 
centre of the channel, x2 = x, = 0, and the Reynolds stress tensor consists of 
the three diagonal components of which two, 2 and 2 are equal. All off-diagonal 
components must be zero. Along the x,-axis the tensor is invariant under a 
90" rotation and may be simplified to the form 

- 
u; q& 0 

- 
= p  UIU, u; (4) (a 0 ;I* 

For the same reason the tensor is simplified along the diagonals. The form 
on the x3,-axes, which is obtained by a 45" clockwise rotation of the x3-axis, is 

_ _ ~  - 
1 u; UlU2 Ul%\ 

For a traverse taken from the x,-axis to the x,,-axis it is apparent that the Rey- 
nolds stress tensor must vary smoothly from its form on the x,-axis to its form on 
the x,-axis, since discontinuities do not occur in fluid stresses. 

The zones of x1 vorticity production can be inferred from these relations. 
Consider the sector defined by the x2-axis, x2 = L and the x,-axis. Along the 
2,-axis there can be no x,-derivative of (Ti - ug) even though the x,-derivative 
may exist since symmetry exists in the x,-direction. The tensor component 
must be of opposite sign on either side of the 2,-axis and is zero along the x2-axis, 
that is the axis is a line of inflexion. Hence, the second derivative of in 
the x,-direction is zero because G& = 0 and is zero in the 2,-direction because 

__ 
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of the line of inflexion. Thus neither of the produetion terms in equation (3)  is 
finite on the 2,-axis. The same situation is obtained for points along the x,-axis 
since the production terms transform as follows 

and the arguments are identical to those above but are based on the x,,, x,, 
co-ordinates. Along the wall the production of vorticity must be zero because 
the Reynolds stresses are zero at  the surface and very small within the viscous 
sublayer. Furthermore, arguments based on symmetry with an image duct 
located on the other side of the wall also give this result. 

Production of vorticity must therefore occur within the triangular sector, 
but derivations based on symmetry cannot yield information as to the areas 
where it will be maximum. The structure of the turbulent field must be fully 
understood before this can be derived and data on the required stress components 
is lacking. However, the large-scale properties of flow in circular ducts must be 
t,he same for all ducts. Near the centreline the intensity of turbulence and Rey- 
nolds stress tensor are influenced by the large eddies which come from all of the 
wall directions. The result is a turbulent field which is axi-symmetric and thus 
the production of vorticity must be very small. Further evidence of this pattern 
is the circular shape of the isovels (figure 1) .  Close to the wall the turbulent field 
is controlled by the attached eddies described by Townsend (1956). The strength 
of these at any location along the wall should be determined by the local wall 
shear. Since the secondary currents have made this uniform, the turbulent 
field should also be uniform. Thus, in the strip along the wall, w3 should be 
negligible and gradients of turbulence properties in the x,-direction very small. 
There must therefore be negligible production of vorticity in the region near the 
wall which leaves only the area near the diagonal as a possible region from which 
vorticity may arise. It can be shown that within this triangular sector the 
production must be negative, that is, tending to produce clockwise rotation of 
fluid elements, but experimental observation that the second of the two produc- 
tion terms in equation (3) is much smaller than the first is required. Considering 
the first term and the analogous data from a circular pipe lends to the conclusion 
that a(;: - G)/2x2 is positive along the x,-axis. Thus since (u$ - ui) is zero along 
the diagonal and assuming a monotonic variation between the two lines, we have 
an indication that a2(q -~~)/(ax,ax,)  is negative in the region of production. 
This is consistent with Prandtl’s contention that the flow is into the corners. 

In conclusion it is noted that there are eight possible subsections of the 
square channel which satisfy the conditions of symmetry, each of which is identi- 
cal in shape to the one examined. Symmetry also dictates that each contains a 
secondary current with an independent production, diffusion and convection of 
x1 vorticity. The conditions of symmetry about the 2,- and x3-axes further imply 
that the production of vorticity will be opposite in sense in adjacent subsections, 

_ -  
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since T3 changes sign at the x2- and x3-axes and (3-4) changes sign at  the 
xz'- and x3,-axes. Thus there must be four positive and four negative circulations 
grouped as opposing pairs with one pair a t  each corner of the duct. 

4. Experimental equipment and techniques 
Experimental data was obtained from a 3 in. square, 70ft. long horizontal duct 

made of plastic-coated plywood. A calibrated flow nozzle and fan supplied air 
at room temperature. In  a previous investigation with this equipment Leutheus- 
ser (1963) confirmed that the flow was uniform at the plane of measurement, 
near the exit, and proceeded to determine the longitudinal velocity components. 

The present investigation provided quantitative data for the secondary 
currents and Reynolds stress tensor by utilizing a constant-current hot-wire 
a,nemometer. The hot-wire filaments were 0.0003 in. tungsten wires with an 
active length of 0.040in. The hot-wire was held by a traversing gear which could 
be positioned to 4 0.0001 in. The anemometer circuit consisted of the standard 
Flow Corporation HWB 2 bridge with frequency compensation, and the Flow 
Corporation random signal voltmeter 12 A 1. The secondary-current data were 
obtained by using a standard HWP-B probe and the sensitive galvanometer 
balance circuit of the HWB2 bridge. The traversing gear for this experiment 
positioned the wire to & 0.0001 in. as well as rotating the wire to -t 1/10 degree. 

Meusurements of secondary currents 
The sensitivity of a hot-wire to flow direction permits measurements of flow 
direction to be made, particularly when the filament is operated a t  a high tem- 
perature and at large angles of incidence. For determination of the U, component 
a HWP-B probe was mounted with the probe axis in the x,-direction. At the 
centreline of the channel a rotational protractor was calibrated. The probe 
was rotated until the wire was at  a rotational angle, Pf, of 60" with respect to the 
position when flow is normal to the wire. In  the /?+ position the Wheatstone 
bridge was balanced for a wire resistance ratio of 1.4 by using a stable current 
supply. The probe was then rotated in the negative direction until the bridge 
again balanced giving the P- position at the centre line to within 1/10 degree by 
means of a vernier. The calibrated positions were then used as a basis for the sub- 
sequent readings. The procedure used at the centreline was repeated throughout 
the flow with variations in P- indicating the yaw of the approaching flow and 
the magnitude of tjhe L i  component which was determined from 

3 = t a n (  Pc-L - P- ). (7)  

Positioning the probe in the x,-direction, the U, velocity was similarly obtained. 
With the three components of CG thus measured flow directions could readily be 
determined. 

Measurement of the Reynolds stress tensor 
The present investigation employed a method of determining all components of 
the Reynolds stress tensor which was devised to produce the maximum experi- 
mental accuracy. The component was first evaluated by mounting a standard 
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probe with the hot-wire normal to the direction of flow. Next, the lateral velocity 
fluctuations were measured by a probe with a hot-wire inclined to the direction of 
flow. The particular probe was mounted in the x,-direction with a wire inclined 
at  an angle of p = 41-5". The angle of the wire was accurately determined by an 
optical comparator. Considering the recent evaluations by Hinze (1959) and 
Webster (1962) the sensitivity of a hot-wire to the angle of incidence is 

(sensitivity); = (sensitivity)'&,(cos2/3 + A2 sin,/?), (8) 

where A is a constant characteristic of the probe. For this particular probe A 
was experimentally determined to be 0.333. Thus the ratio of the longitudinal 
and lateral sensitivities S,  and S,  for this wire is 

Sf sin2 41.5" + 0.10 cos2 41.5" 
8; - cos2 41.5" + 0.10 sin2 41.5" 
_ -  

= 0.823. 

It is worth noting that a 9.1 yo error in the lateral sensitivity would have arisen 
if the hot-wire had been assumed to be at the design value of 45'. As the probe 
is rotated about its shaft the ratio of sensitivities is unaffected provided that the 
mean flow is parallel to the shaft. When the hot-wire is in the (zl, x,)-plane the 
xl- and x2-components of the instantaneous velocity are measured in the com- 
bin at  i o n 

where C is the amplifier calibration which is normally constant during an 
experiment. Squaring the signal and taking the time average gives 

el2 = C(S,  u1+ S,U.z), (10) 

As the probe is rotated by 45" increments there results 

e x .  = C2SZ,[% + 1-83 + 0.8332,], ( 1 l b )  

& = C2SZ,[q+ 1*82u,U, + 0*823q], 

e z .  = C2S2,[2- 1 . 8 2 U , ,  + 0*823ii?$J, 

e T 2  = G2SZ,[$- 1*82u,U, + 0.82331, 

e z  = C2SZ,[&f- 1.82- i- 0.823ugt], 

= C2S?[$-- 1*82u,U, + 0-823U,2], 

& = C2St[$+ 1 * 8 2 U , , +  0-823~2,]. 

(11c) 

( 1 1 4  

( 1 l e )  

(11f) 

(11g) 

(11h) 

- 

Combination of these eight readings gives most of the components directly. 
For example, i&iX, is obtained by subtracting e z  fromz,, and similarly wQ 
is determined. The terms required for the production of vorticity are obtained by 
taking the sum of equations (1 1 a )  and ( 1  1 e )  and subtracting (1 1 c) and (1 1 g) 
which gives (2 -2) and taking the sum of equations (1 1 d) and (1 1 h) and sub- 
tracting (1 1 b )  and ( 1  I f )  which gives u2, - z, = - 2 U , .  Thus these are all ob- 
tained using the same wire under identical operating conditions giving maximum 
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accuracy. The variation and inaccuracy of determination of C and S,  leads to 
considerable scatter of results taken from different wires. This, however, is 
required if ui or uf are determined. Hence these components were not deter- 
mined as accurately as the difference between them. 

_ _  

5. Experimental results 
All of the terms in the x,-vorticity equation were measured for the square 

duct for the triangular sector described above. Some mean flow characteristics 
were also measured to provide a general description of the flow. All results were 

"ZlL 
FIGURE 3. Lines of constant turbulence kinetic energy for flow in a square 

duct, U9 = 65.9 ft./sec, U ,  = 2.55 ft./sec, U,,De/v = 83,000. 

made dimensionless using the characteristic length L and velocity U,, the 
average shear velocity, with the exception of the U ,  velocity components which 
Leutheusser ( 1963) made dimensionless by using the duct centreline velocity Uc.L. 
Table 1 contains data of the longitudinal velocity components, secondary velocity 
components, and all the components of the Reynolds stress tensor for the 3in. 
by 3 in. duct. Figure 1 shows the isovel pattern for the mean velocity as deter- 
mined by Leutheusser (1963). The distortion of the isolvels in the corner regions 
is clearly evident. Figure 3 is a plot of the turbulence energy in the duct, which is 
lowest at  the centre and highest in the wall region where turbulence is produced. 
It is evident that the turbulence field is more distorted by the secondary flow 
than is the mean velocity field. 



0.9 i- J--- “2 .2-A 
0.8 t- 

0‘7 i- 
0.6 1 
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Jf 
J’ 

9, 

1- 

\: i -  
I -  

%lL 
FIGURE 4. Secondary flow in a square duct, = 65.9 ft./sec, U ,  = 3.55 ft./sec, 

U,,D,jv = 83,000. 

obtained from tabulated and faired data of the secondary currents and xl- 
vorticity by a finite-difference technique. Higher accuracy was obtained by using 
the equivalent vectorial form 

where a is the angle between the secondary current and vorticity gradient vectors. 
The resulting data are plotted in figure 6. The finite-difference method of deter- 
mining the first and second derivatives is of the same order of magnitude as the 
error in the function. This is true if the spatial resolution is known to a high accur- 
acy as is the case with the above-mentioned traversing gear. Similarly Kunz 
(1957) shows that the error of the second derivative is only twice the error of the 
original function. 

The turbulence correlations associated with vorticity production are plotted 
in figures 7 and 8. The magnitude of the production of x,-vorticity was obtained 
from these correlations by a finite-difference technique. In  the analysis the 

25 Fluid Moch. 19 
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" Z l L  
FIGURE 5. Lines of constant vorticity !2 (dimensionless) for flow in a square duct, 
L = 2.5 in., U,, = 28.5 ft./sec, U,, = 22.9 ft./sec, UavDe/v = 60,000 (Hoagland 1960). 
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contribution of Fu3/U72 was found to be negligible, the correlation is an order of 
magnitude smaller than (2 -g)/u,", and furthermore the second-order deri- 
vatives tended to be self-cancelling. Thus the production x,-vorticity was 
accurately described by the first term in equation (3). As seen in figure 9 the 
region of maximum production lies near the xr-axis and is distant from the 
wall and hence is removed from the region correlated by the inner law. The pro- 
duction is negative, wherever it exists, indicating that there is a similar flow 
mechanism everywhere in the sector, Reynolds stresses acting only to produce 
clockwise rotations. 

0.9 b 

0.8 t- 

0.6 0-7 c 
5 0.5 
Q 

0.3 0'4 [ 
0.2 t- 

-1 

/ 

/ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 2 l L  

FIGURE 9. Production of vorticity (dimensionless) for flow in a square duct, 
V,,D,JV = 83,000. 

The diffusion of vorticity was obtained from tabulations of the x,-vorticity 
shown on figure 5 by finite difference methods, and is plotted in figure 10. The 
diffusion of vorticity is most intense near the wall and towards the corner. It is 
obviously associated with the viscous stresses which are largest in the neighbour- 
hood of the corner. Since the region of diffusion occurs nearer the wall than the 
region of production, the convection of vorticity must be from the region of 
production to the region of diffusion as shown in figure 6. 

As can be seen from figures 7 , lO and 11, the balancing of the vorticity equation 
is good at  all points in the cross-section. Zones of vorticity production are balanced 
by vorticity convection away from these zones. Similarly, vorticity diffusion is 
balanced by vorticity convections tQ these regions. 
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FIGURE 10. Diffusion of vorticity (dimensionless) for flow in a 

square duct, UayDg/v = 53,000. 

- _  
FIGURE 11. Isovels of ( a )  axial velocity and ( b )  turbulence correlation (ui -ui)/U: for flow in 
a trapezoidal duct, height = 18.3cir1, Uc.L = 83+1ft./sec, U,, = 6%9ft./sec, U ,  = 3-01ft./sec, 
U,,D,/v = 340,000 (Rodet 1960). 
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6. Effect of Reynolds number 
The vorticity equation presented in § 2 is in dimensional form, thus the data 

obtained for different test conditions cannot be directly related. To overcome 
this difficulty equation (3) can be placed in dimensionless form by dividing 
lengths by the half width of the duct L and velocities by the average shear velo- 
city. Any other velocity could be chosen on dimensional grounds alone but the 
shear velocity is physically the most significant since the secondary flows are akin 
to the velocity defect used in formulating the outer laws of Townsend (1 956). Thus 
the production and convection terms can be expressed in dimensionless variables 

(13) 

All dimensional factors are embodied in the multiplicatioii of the diffusion term. 
The ratio r!L/v is a cross-section Reynolds number. 

There is some justification for assuming that the first four terms are inde- 
pendent of the Reynolds number. In  all flows at  large Reynolds number those 
properties not associated with the dissipation of energy are found to be similar 
for variations of the Reynolds number, cf. Townsend (1957). Thus, considering 
the physical processes involved, convection of vorticity is based on the mean flow, 
and production arises due to the action of the largest eddies. If equation (12) 
is to balance for all Reynolds numbers, the vorticity diffusion term must be 
constant as well. This can only result in the second-order derivatives of Ql 
varying inversely with the Reynolds number. 

The experimental data available from all sources appears to bear out this 
behaviour. The secondary currents iii a square channel appear to be independent 
of the Reynolds number in the regions not close to the corner, since no variations 
in strength or orientation can be detected in the range of Reynolds numbers 
from 20,000 to 83,000 based on the average velocity Uav. The coiivection of 
vorticity is thus independent of Reynolds number and the same result is seen 
in the data for vorticity production. Diffusion was found to be significant only 
in the wall region which is correlated by the inner law, and thus must depend on 
the Reynolds number. As noted above, it must also vary inversely with the 
Reynolds number at  any given point. Thus the effect, of Reynolds number on 
the secondary current streamlines can be predicted. 

Consider first the region very close to the wall where the streamlines are 
parallel to the wall, so that Ql = ari,/ax,, 

and the diffusion of vorticity simplifies to 

For this term to be constant the secondary currents must extend closer t o  the 
wall as the Reynolds number increases. Applying this type of analysis to the area 
close to the corner leads to the conclusion that the secondary currents may also 
penetrate further into the corners as the Reynolds number increases. It is 
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seen that very small adjustments to the patterns are su-Ricient to alter the third 
derivatives significantly and that these required changes could not be measured 
with the techniques used in this study. However, the wall shear measurements 
of Leutheusser (1963) do indicate an increasing corner penetration and an in- 
creasing averaging of the wall shear velocity as the Reynolds number increases. 
It appears that the approach of the secondary currents to the wall is a similar 
phenomenon to the decreasing thickness of the viscous sublayer with increasing 
Reynolds numbers. 

In summary, the secondary currents must approach the walls as the Reynolds 
number increases. The resulting constancy of the dimensionless vorticity dif- 
fusion makes the diffusion compatible with the production and convection of 
vorticity, which are independent of the Reynolds number. 

7. Vorticity in ducts of other shapes 
The development presented in the preceding sections for the square duct could 

be repeated for any regular polygon cross-section. The basic tenets were the 
required symmetry of the Reynolds stress tensor about the lines connecting the 
centre to the mid-points of the sides and to the corners. Geometry alone requires 
that there be twice as many sectors as sides and that the circulation be of opposite 
sense in adjoining sectors. From experimental measurements it is apparent that 
the sign of vorticity is such as to produce secondary flows towards the corners 
with the production of vorticity occurring in the zone defined by the corner 
bisector and wall. The conditions of corner symmetry can be extended to any 
polygon with the requirement that the number of sectors must be twice the 
number of sides. Since polygons with a large number of sides must approach the 
flow properties of a circular section, it is certain that as the number of sides is 
increased the longitudinal vortices must be smaller in magnitude and more 
concentrated in the neighbourhood of the corners. Thus there must be a critical 
Reynolds number for each polygon below which Q1 is zero everywhere since the 
zone of production will be within the inner law flow regime, a regime which does 
not appear to be associated with vorticity production. 

Rodet (1960) studied the structure of turbulence in a trapezoidal duct with 
corner angles of 75" and 105", a shape which is a small distortion of a square. 
His results which form the bases of figure 11 show that the isovels are roughly 
symmetrical with respect to the corner bisectors. The plot of (2-2) is also 
nearly symmetrical about the corner bisectors. Unfortunately this data is in 
error since the turbulence measurements were made parallel and normal to the 
top. If all of the Reynolds stress tensor components had been measured the 
tensor could have been rotated to the co-ordinate set x1x2.x3, which would be 
symmetrical about the bisector. It is believed that the resulting turbulence 
correlation (u$ - u$) would display the required corner symmetry. Nevertheless, 
it does appear from inspection of figures 7 and 11 that the region of greatest 
vorticity production is near the corner bisectors in square and trapezoidal 
ducts. In  more general terms the production should be thus associated with 
a line perpendicular to the boundary a t  its point of maximum curvature for 
any general duct contour. 

_ _ _  
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Considerably more information is available on flow in a duct with a 3 x 1 
rectangular section. Again the evidence points to a division of the secondary 
flow by the corner bisector. The four sections of figure 12 illustrate this effect 
but most particularly the change in sign of Ql. Exactly as in the case of the square 

x3 

A 
1 1 1 1 1  

I I I I I  I I I I I  I 1  I I' I 

- P- 

FIGURE 12. Flow in a 3 in. x 1 in. rectangular duct. ( a )  Isovels of axial velocity (Leutheusser 
1963): Uc.L = 29.8 ft./sec, B = 1.5 in., U,,D,/v = 56,000. (b) Secondary flow streamlines 
(Hoagland 1960) : Uc-L = 51.8 ft./sec, B = 2.5 in., U,,D,/v = 60,000, B(a$/ax,) = Ueeeofidarg/ 
Uc.L. (c )  Lines of constant vorticity Cll (dimensionless) (Hoagland 1960) : U c . ~  = 51.8 ft./sec, 
B = 2-5 in., U,,D,Jv = 60,000. (d) Lines of constant (z- G ) / U : ,  U C . ~  = 31.9 ft./sec, 
B = 0.5 in., U,,D,jv = 20,000. 
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duct the sign of (L?j -2) changes as this bisector is reached. Within the triangular 
area next to the short wall the magnitude of Ql and the production and diffusion 
of vorticity are close to the values measured in the square duct. This is consistent 
with the fact that the secondary flow in this zone is identical in shape to that in a 
square duct. Within the trapezoidal area adjacent to the long wall, a different 
flow pattern exists. Circulation is in the same direction everywhere but of a 
greater strength than in the smaller sector. There is no evidence that production 
is greater so it must be concluded that the vorticity second-order gradients 
associated with diffusion are smaller in the trapezoidal section. This is consistent 
with the displacement of the point of maximum Ql further from the corner in the 
trapezoidal sector. A close examination of the isovel pattern shows that the 
secondary flow is not correlated everywhere to the curvature variations of the 
isovels. Prandtl assumed that all curvature reversals are associated with a flow 
circuit. For the trapezoidal sector this criterion would require two circuits, 
whereas Hoagland (1960) only detected one close to the corner bisector. The 
existence of a second vorticity is not excluded, however, since the magnitude 
of the circulation would be so small as to be undetected by even a hot-wire yaw 
meter. 

In conclusion there is strong evidence to indicate that corner symmetry applies 
to all polygons such that the turbulence correlation (Li -2) which is responsible 
for vorticity production is zero on the corner bisector. As a consequence, each 
corner of a polygon will have two circulations which are separated by the corner 
bisector and which direct fluid into the corner and therefore are of opposite 
rotation. 

8. Discussion 
The experimental evidence obtained from flows in square, trapezoidal and 

rectangular ducts enables a definitive description to be made of the secondary 
flows and the region where the vorticity Ql is created and destroyed. However, 
the information is lacking which will enable the mechanism of production to be 
defined. Further studies of the turbulent field will need to be made before the 
eddy structure which produces the Reynolds stress gradients can be predicted. 
When an analytical description is obtained, even though it is approximate, then 
equation (3) can be solved to give the distribution of Ql as well as the distribution 
and strength of the secondary flows. 

Probably the most important conclusion reached from this investigation is 
that the production of vorticity is associated with the relative proximity of an 
element of fluid to the walls of the duct. In  a section of a polygon this can be 
specifically stated as the nearest to a corner bisector. There is strong evidence 
that the production is always zero on a bisector and is of opposite sense on either 
side. Therefore a corner bisector separates a pair of independent secondary 
circulations. This fact can lead to pronounced simplifications in future analyses 
of the effects of secondary flows. This dependence of Ql on the existence of a 
corner would preclude the possibility of secondary currents for flows between in- 
finitely wide flat plates. Thus the usual assumption of neglecting secondary flow 
effects in very wide rectangular ducts is justified except in the corner regions. 
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There still remains the problem of relating 8, and the secondary flow to dis- 
tortions of the main flow. This relationship cannot be obtained from a study of the 
x,-vorticity equation because the main flow does not enter directly. Thus the 
mean flow momentum and energy equations must be investigated. However, 
a complete explanation is unlikely until the simpler flow r6gime in pipes is fully 
understood. 

Finally, it  appenrs that the relationship used by Prandtl(1927) and Nikuradse 
(1936) to predict tile nature of secondary circulations from the isovel pattern may 
not be correct in all cases. This conclusion is a consequence of the data for 
3 in. x 1 in. rectangular cha,nnels where a double circulation in the trapezoidal 
section is suggested by the curvature of the isovels, while only one circulation 
near the corner was experimentally observed by Hoagland (1960). 

In conclusion, the authors have not attempted to include tabulations of all 
t,he experimental data which were employed in the analyses; however these data 
can be obtained from the Ph.D. thesis of Brundrett (1963). 

The authors are indebted to the Department of Mechanical Engineering of the 
University of Toronto and to the National R'esearch Council of Canada for 
research grants which supported this experimental study. 
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